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Note 

A Slightly Modified Priifer Transformation Useful for 
Calculating Sturm-Liouville Eigenvalues* 

Among the methods suggested for solving Sturm-Liouville eigenvalue problems 

(PW + (4 + Ar)Y = 0 on (4 b), 

4Y(u) + A,p(a) Wu) = 0, 

&WI + &P(b) VJ) = 0, 

there are several [l-3] which employ either the standard Pri.ifer transformation 
[4; 5, pp. 209-2131 

Y(x) = p(x) sin 0(x), 
(1) 

p(x) Y’(.x) = p(x) cos e(x) 

or the modified [6-81 (when p(x) = 1) 

Y(x) = p(x) sin 8(x), 
(2) 

Y(x) = [hr f q]1/2 p(x) cos O(x) 

to convert the given problem in terms of a second-order linear differential equation 
for Y into an equivalent one involving a first-order nonlinear equation for 19. 

There are some fairly obvious reasons for being attracted to the modified form, 
especially when the eigenvalue is relatively large. At the same time it is also obvious, 
because of the possible vanishing of 4 + Xr that the modified form can be compara- 
tively complicated to use. 

The purpose of this note is to point out that much of the advantage of the modified 
Prtifer transformation can be had with only a very slight change in the standard form, 
and correspondingly only an insignificant increase in complexity. 

* This work was supported by the U. S. Department of Energy (DOE) under Contract AT(29-l)- 
789. The U. S. Government’s right to retain a nonexclusive royalty-free license in and to the copy- 
right covering this paper, for governmental purposes, is acknowledged. 
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THE MODIFICATION 

The change we have in mind is simply to insert a positive constant, z, into the 
transformation. Thus in place of I3 and p defined by (1) we have found that consider- 
able improvement can often be had by defining u and v by 

Y(x) = u(x) sin y(x), 
(3) 

p(x) Y(x) = zu(x) cos y(x). 

Plainly v and 0 are related by 
tan 9) = z tan 0. (4) 

In particular, v and 8 agree exactly whenever either is a multiple of 42. 
To see why this almost trivial change could be so beneficial, consider the differential 

equation for e 

along with that for v 

8' = i/p ~0~2 e + (4 + hr) sin2 8 (5) 

9’ = $ cos2 rp + (Jf- + h f) sin2 v, 

when the problem is such that X is large. Take, for example, the case 

P = 1, q = -x2, r= 1, A, = 0, B2 = 0 

on the interval (0, 1) considered by Hargrave [8]. The eigenvalues of this problem get 
large fairly fast, the 10th and 20th being 

A,, = 987.29, h,, = 3948.2. 

Now looking at (5) it is easy to see that the right-hand side fluctuates in value from 1 
(when e(x) is a multiple of r) to about X (when 0(x) is an odd multiple of 42). But if z 
in (6) is chosen to be about the size of h1l2, then the right-hand side of (6) is never very 
far from the value h1j2. This means v’(x) is pretty nearly a constant, and so the numeri- 
cal integration of (6) is very much easier than (5). Of course the difference in ease of 
computation becomes even more dramatic for the higher eigenvalues. 

While it is true that to be able to take advantage of this “slightly modified” Prtifer 
transformation one must be able to choose a suitable value for z, it is not necessary 
to be able to pick the actual optimum value. Most of the improvement will be 
obtained even if z is only about the right size, at least in the case of the higher eigen- 
values. 

Since the choice of z is dictated by a desire to minimize both the magnitude of the 
right-hand side of (6) and the magnitude of its fluctuations, probably the best that 
can be done is to choose z so that, in some average sense, 

z + (p [ q + hr l)lj2. 
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The places where q + Ar is positive will, of course, be the most important when 
choosing z. 

TYPICAL NUMERICAL RESULTS 

To give some idea of the potential savings from this simple idea we counted the 
number of function evaluations needed by one of the standard numerical integrators 
when applied to a number of representative eigenvalue problems. The table below 
lists the number, N, of evaluations required when z = 1 (the standard Prtifer trans- 
formation) and when z was chosen by the simple rule 

where n is the eigenvalue index and ZJ is approximately the length of interval on 
which hr + q is positive. (No attempt was made to optimize the choice of z.) This 
rule of thumb results from observing that the eigenfunction y/, has II - 1 zeros. 

Of course most problems do not show as much savings as the first two examples, 
but many do show a substantial savings, and none we have so far tried showed a 
significant loss. 

1. Weber’s equation. p = I, r = I, q = -x2, a = 0, b = 1: 

A, = = = 10.15 I 2 1.0 N 143 
z = 3.133 N = 74 

= A,, = = 987.29 I 2 1.0 N 3074 
z = 31.416 N = 110 

&,,, = = = 98696.5 I 2 1.0 N 51409 
z = 314.16 N = 110. 

2. Mathieu’s equation. p = 1, r = I, q = -2 cos 2x, a = 0, b = 5-12: 

A, = 4 
I 
z = 1.0 N = 120 
z = 2.004 N = 92 

A, = 100 
I 
z = 1.0 N = 1084 
z = 10.0 N= 128 

A,, = 400 
I 
z = 1.0 N = 2812 
z = 20.0 N = 146 

A,, = 40,000 
I 
z = 1.0 N = 48719 
z = 200.0 N = 128. 
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3. Harmonic oscil1ator.p = 1, r = 1, q = -x2, a = -co, b = +a: 

A1 = 1.0 I z = 1.0 N = 210 
z = 1.076 N = 215 

A*, = 19 I z = 1.0 N = 2377 
z = 3.51 N = 1159. 

4. Hydrogen atom.p = 1, r = 1, q = l/x - 2/x2, a = = 0, b +a: 

h, -0.0625 fz = 1.0 N = 382 = 
(z = 0.142 N = 269 

A,, = -0.002066 5 x i-y2 N = 2773 
N = 1349. 

5. Airy differential equation. p = 1, r = 1, q = -x, a = 0, b = + co: 

A, = 2.338 z = 1.0 N = 233 
z = 1.11 N = 228 

A,, = 12.829 (z = 1.0 N = 1903 
(z = 2.54 N = 1128. 

6. Bessel equation (V = 2). p = x, r = x, q = -4/x, a = 0, b = 1: 

A, = 1.0 N = 192 = 26.37 ! z 
z = 4.22 N= 138 

1136.8 z = = A,, 1.0 N 2532 = 
z = 31.45 N = 961. 

7. Bessel equation (v = $). p = x, r = x, q = -0.0625/x, a = 0, b = 3: 

A1 0.8593 z = 1.0 N = 120 = 
z = 0.70 N = 92 

A4 = 1.0 N = 699 = 16.49 I z 
z = 3.8 N = 368. 

8. Legendre’sequation.p=l-x2,r=1,q=0,a=-l,b=l: 

1\2 = 2.0 z = 1.0 N = 74 
z = 1.57 N = 74 

A,, = 90.0 z = 1.0 N = 1951 
z = 14.14 N = 878. 
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9. Rotation Morse oscillator. p = 1, r = 1, q = 2000(2E - E2) - 2/x2, E = 
exp(-1.7(x - 1.3)), a = 0, b = +c0: 

A, = = = -1923.5 i z 1.0 N 2943 
z = 10.67 N = 2535 

A,, = 1.0 N = 4900 = -815.5 (z 
iz = 27.1 N = 2131. 
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